$Sr_{11}Ge_4N_6$: a new nitride composed of $[GeN_2Sr_7]^{4+}$ antiperovskite-type slabs and $[Sr_4Ge]^{4+}$ layers, separated by sheets of bent $[Ge^{II}N_2]^{4-}$ ions

Zoltán A. Gál and Simon J. Clarke*

Received (in Cambridge, UK) 6th September 2004, Accepted 29th September 2004 First published as an Advance Article on the web 21st December 2004 DOI: 10.1039/b413534b

The layered nitride $Sr_{11}Ge_4N_6$ contains Ge^{4-} Zintl anions in both $[Sr_4Ge]^{4+}$ layers and $[GeN_2Sr_7]^{4+}$ antiperovskite-type slabs which are separated by sheets of bent $[Ge^{II}N_2]^{4-}$ ions; the observed range of formal germanium oxidation states in nitrides thus extends between +4 and -4.

A number of binary nitrides exhibit structural or electronic properties that make them technologically useful (e.g. Si₃N₄, TiN and GaN). More complex nitrides are expected to show new structures and useful properties complementary to those of complex oxides. Recent decades have seen a boom in efforts, both experimental and theoretical,¹ to understand ternary and higher order nitride systems, including the development of new synthetic routes.² One such technique uses sodium-rich mixedmetal melts as nitride growth media and has produced a range of alkaline earth (AE)-main group nitrides.²⁻⁵ Several AE-Ge-N phases synthesised by this and other routes have structures analogous to those of silicates, containing, for example, isolated $[Ge^{IV}N_4]^{8-}$ tetrahedra in Ca₄GeN₄³ corner linked tetrahedral chains in $\text{Ca}_5\text{Ge}_2\text{N}_6,{}^3$ and a three dimensional $\beta\text{-cristobalite}$ framework in CaGeN2.6 The use of the sodium-rich melt technique also stabilizes Ge in a wide range of lower oxidation states, sometimes combining them in the same structure, as in $Ba_3Ge_2N_{2,2}^4$ where Ge^{2-} in the form of infinite zigzag chains and Ge^{2+} in the form of bent $\left[Ge^{II}N_2\right]^{4-}$ units coexist. The antiperovskite GeNCa₃⁷ contains Ge in a formal oxidation state of -3. Here we report a nitride with an unprecedented intergrowth structure in which formal Ge⁴⁻ Zintl anions, isolated for the first time in a nitride, are present in [GeN₂Sr₇]⁴⁺ antiperovskite-type slabs and in [Sr₄Ge]⁴⁺ layers, the two layer types being separated by sheets of $[Ge^{II}N_2]^{4-}$ ions.

The elements† were sealed in a tantalum-lined nickel tube, heated at 900 °C for 2 days and cooled to room temperature at 0.1 °C min⁻¹. Excess sodium was evaporated from the tube under dynamic vacuum at 350 °C after which the products could be easily removed and analysed. Energy dispersive analysis of X-rays (EDX)‡ indicated an overall 75.1% Sr to 24.9% Ge atomic ratio (esds are $\pm 1.7\%$) on several well-shaped crystals of an extremely air-sensitive material which constituted approximately 10% of the sample. Due to the absorption of the detector window, the nitrogen content could not be quantified. Attempts to synthesise pure bulk material by reactions between stoichiometric ratios of Sr₂N, Ge and Ge₃N₄ powders were unsuccessful.

Single crystal X-ray diffraction§ on the black prisms indicated a primitive tetragonal cell (a = 7.278(1) Å, c = 18.681(4) Å) and the

systematic absences were consistent with only one space group: *P4/nbm* (no. 125). The initial structural model obtained by direct methods included seven "heavy" atoms while two additional nitrogen atoms were located from Fourier difference maps. Although the scattering power of Sr^{2+} is very similar to that of Ge^{4-} since they have isoelectronic closed shells, their greatly differing chemical environments and the information from elemental analysis allowed for a straightforward assignment. The fractional atomic coordinates for $\mathrm{Sr}_{11}\mathrm{Ge}_4\mathrm{N}_6$ are listed in Table 1.

The layered nature of $Sr_{11}Ge_4N_6$ is depicted in Fig. 1. Red polyhedra represent Ge3-centred Sr_8Ge distorted square antiprisms which form a $^2_{\infty}[Sr_{8/2}Ge]^{4+}$ layer in the *ab* plane by edge sharing. All Sr2–Ge3 distances are 3.2637(5) Å. The Ge3–Ge3 separation of 5.15 Å (*al*/ $\sqrt{2}$) rules out any Ge–Ge bonding in the plane. Such isolated Ge^{4–} anions have precedent in the intermetallic phase $Sr_5Ge_3^8$ which contains very similar Sr_4Ge layers (although with longer Sr–Ge distances of 3.44 Å) which carry a formal +4 charge and are separated by Ge_2^{6-} dumb-bells and Sr^{2+} cations.

The blue distorted octahedra in Fig. 1 are N2-centred Sr₆N units which are corner-linked to form a two-dimensional ${}^2_{\infty}$ [GeN₂Sr₇]⁴⁺ slab with the antitype of the ABX₃ perovskite structure in which the 12-coordinate "A" site in the slab is occupied by Ge2 atoms (isolated red spheres in Fig. 1). This unusual coordination environment for Ge has been observed previously in nitrides: Ca₃GeN⁷ has the ideal antiperovskite structure with a ${}^3_{\infty}$ [Ca_{6/2}N]³⁺ framework and a formal -3 germanium valence for this 12-coordinate environment (Ca–Ge = 3.36 Å). In Sr₁₁Ge₄N₆ the N2 atom is octahedrally coordinated by Sr: 2.449(6) Å × 1(Sr3), 2.6029(7) Å × 4(Sr1) and 2.687(6) Å × 1(Sr4), Sr–N distances consistent with those previously reported in binary¹ and ternary⁵ strontium nitrides. The two layers of Sr₆N octahedra in the ${}^2_{\infty}$ [GeN₂Sr₇]⁴⁺ slab in Sr₁₁Ge₄N₆ are contra-rotated by 6.4° around

Table 1 Fractional atomic coordinates and equivalent isotropic displacement parameters U(eq) for $Sr_{11}Ge_4N_6$

Atom	Site	X	у	Ζ	$U(eq)/(Å^2 \times 10^3)^a$
Sr1	8 <i>m</i>	0.47172(5)	0.52828(5)	0.12971(3)	14(1)
Sr2	8 <i>m</i>	0.57881(4)	0.42119(4)	0.40170(2)	10(1)
Sr3	4g	1/4	1/4	0.2750(1)	10(1)
Sr4	2a	1/4	1/4	0	18(1)
Gel	4h	3/4	1/4	0.2585(1)	10(1)
Ge2	2c	3/4	1/4	0	12(1)
Ge3	2b	1/4	1/4	1/2	12(1)
N1	8 <i>m</i>	0.3951(4)	0.6049(4)	0.3163(2)	13(1)
N2	4g	1/4	1/4	0.1438(3)	11(1)
^{<i>a</i>} $U(eq)$ is defined as one third of the trace of the orthogonalised U_{ii}					

" U(eq) is defined as one third of the trace of the orthogonalised U_{ij} tensor

^{*}simon.clarke@chem.ox.ac.uk

Fig. 1 Polyhedral representation of $Sr_{11}Ge_4N_6$. Red Sr_8Ge distorted square antiprisms edge share to form $\frac{2}{\infty}[Sr_{8/2}Ge]^{4+}$ layers containing Ge^{4-} Zintl anions. Blue Sr_6N octahedra share corners to form antiperovskite type $\frac{2}{\infty}[GeN_2Sr_7]^{4+}$ slabs also containing Ge^{4-} anions (red spheres). At the interface of the two cationic layers are bent $[GeN_2]^{4-}$ anions (Ge^{II}).

the *c* axis in a manner designated $(00\Phi_z)$ in the nomenclature describing octahedral tilts in layered perovskite-related materials such as Ruddlesden–Popper phases with an even number of octahedral slabs.⁹ The tilting is a consequence of the mismatch between the ideal Sr–Ge and Sr–N distances: the Ge atom is slightly small for its perovskite-type "A" site and is surrounded by four Sr1 atoms at 3.3286(6) Å in a distorted tetrahedral arrangement, four Sr4 atoms at 3.6389(5) Å in a square plane and four Sr1 atoms at 3.7518(7) Å. This is not inconsistent with a higher formal valence on Ge2 than on the corresponding "A" site atom in Ca₃GeN, and we formulate the antiperovskite slab as $\frac{2}{\infty}$ [GeN₂Sr₇]⁴⁺ containing chemically sensible Ge^{4–} Zintl anions.

The octahedral tilting removes the mirror plane normal to the caxis from an idealised double perovskite layer and the space group is P4/nbm as predicted for such a tilting scheme.⁹ At the interface of the two positively charged layers are $[Ge^{II}N_2]^{4-}$ angular units which charge balance the overall structure. This unusual 18 e⁻ nitridometallate anion, also observed in Ba₃Ge₂N₂⁴ and Sr₂GeN₂⁵ is bent, as expected by analogy with the isoelectronic SO₂ and $SnCl_2$. These units, generated from Ge1 (4*h*) and N1 (8*m*) by a mirror plane, have C2v symmetry with equal Ge1-N1 bond lengths of 1.844(4) Å and a N1-Ge1-N1 angle of 108.2(3)°, very similar to that previously found in nitrides^{4,5} and molecular systems such as $Ge^{II}[N(SiMe_3)_2]$ ¹⁰ The Ge1 atom in this $[Ge^{II}N_2]^{4-}$ anion carries a lone pair which protrudes into the positively charged antiperovskite-type slabs and is coordinated by eight Sr atoms in that slab: 3.3154(8) Å \times 2(Sr1), 3.6520(5) Å \times 4(Sr3) and 3.7401(8) Å $\times\,$ 2(Sr1). Two Sr2 atoms in the $_{\infty}^{2}[Sr_{4}Ge]^{4+}$ layers actually lie closer (3.2039(8) Å) to the Ge1 atoms of the $[\text{Ge}^{II}\text{N}_2]^{4-}$ units, but these Sr atoms are more closely coordinated by three N1 atoms in $[Ge^{II}N_2]^{4-}$ units: Sr2–N1 = 2.474(4) Å × 1; 2.807(3) Å × 2. As well as being coordinated by three Sr2 atoms and by Ge1, the N1 atoms of the $[Ge^{II}N_2]^{4-}$ units are within bonding range (2.896(2) Å) of two Sr3 atoms in the antiperovskite-type slabs.

The coordination of both N1 in the $[Ge^{II}N_2]^{4-}$ units and N2 in the antiperovskite slabs is thus sixfold as is found in many nitrides.¹ Extended Hückel calculations carried out using the YAeHMOP software package11 confirm that both Ge2 (in the ${}_{\infty}^{2}$ [GeN₂Sr₇]⁴⁺ layers) and Ge3 (in the ${}_{\infty}^{2}$ [Sr₄Ge]⁴⁻ layers) have complete octets and may be considered to be formally Ge^{4-} . The presence of unfilled Ge1-derived states above the Fermi level suggests that the material should be a narrow band gap semiconductor consistent with its physical appearance, although physical property measurements are hampered by the air sensitivity of the compound. This work extends the range of two-dimensional building blocks available for the construction of layered solids; we are investigating structure-compositionproperty relationships in other nitrides and non-oxide solids with low-dimensional crystal structures constructed from a range of well-defined layer types.

We thank the UK EPSRC (grant GR/R53296), Dr Andrew Cowley for his help with the XRD experiment and Dr Norman Charnley for his aid in the EDX analysis. SJC thanks the Royal Society for further financial support.

Zoltán A. Gál and Simon J. Clarke*

Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, Oxfordshire, UK OX1 3QR. E-mail: simon.clarke@chem.ox.ac.uk; Fax: +44 1865 272690; Tel: +44 1865 272600

Notes and references

[†] Operations were carried out in a Glove Box Technology argon-filled glove box (O₂ content < 2 ppm). 90 mg of Sr shavings cut from a freshlycleaned surface of Sr chunk (Alfa 99.9%), 72 mg of Ge powder gained by pulverizing Ge pieces (Alfa 99.99%) and 48 mg of Ti powder (Alfa dehydrided 99.99%) were loaded in a nickel tube lined with Ta foil (Alfa 99.9% 0.025 mm thick) closed at the bottom and already containing 85 mg of NaN₃ (Aldrich 99.5%) as the nitrogen source. [**Caution:** sodium azide is highly toxic and is readily absorbed through the skin]. 200 mg of freshly cut sodium was added as the crystallization flux. The tube was transferred to an arc-welder and its top was welded closed under a stream of purified argon. To prevent oxidation the nickel tube was sealed under dynamic vacuum in a fused silica envelope.

‡ Elemental analyses on single crystals were carried out on a JEOL JSM-840A scanning electron microscope equipped with an Oxford Instruments ISIS300 energy dispersive X-ray analyser. No trace of titanium, tantalum or nickel was found in any of the crystals.

§ Single crystal XRD data were collected on a 0.08 × 0.06 × 0.04 mm³ reflective black crystal using a Nonius Kappa CCD diffractometer: Mo Kα radiation ($\lambda = 0.71073$ Å); angular range 5.14° $\leq \theta \leq 29.13°$; completeness to θ_{max} : 97.6%; $R_{\text{int}} = 0.081$; 26697 reflections measured (726 independent). Structure solution (direct methods): SHELXS-97,¹² absorption correction: numerical based on face indexing¹³ ($\mu = 35.34 \text{ mm}^{-1}$; max/min transmission: 0.27/0.12). Space group *P4/nbm*, *a* = 7.278(1) Å, *c* = 18.681(4) Å, *Z* = 2, $\rho = 4.491$ g cm⁻³, *T* = 173 K, *M* = 1338.24. Full matrix refinement on *F*² using 36 parameters and no restraints: SHELXL-97¹² ($R_1 = 0.0236$, $wR_2 = 0.0473$ for *I* > 2 $\sigma(I)$, Goodness of fit on *F*² = 1.191). CCDC 250041. See http://www.rsc.org/suppdata/cc/b4/b413534b/ for crystallographic data in .cif or other electronic format.

 F. J. DiSalvo and S. J. Clarke, *Curr. Opin. Solid State Mater. Sci.*, 1996, 1, 241; R. Kniep, *Pure Appl. Chem.*, 1997, 69, 185; R. Niewa and F. J. DiSalvo, *Chem. Mater.*, 1998, 10, 2733; D. H. Gregory, *J. Chem. Soc., Dalton Trans.*, 1999, 259; L. F. Mattheiss, *Phys. Rev. B: Condens.* *Matter*, 1993, **47**, 8224; J. M. Oliva and E. Canadell, *Inorg. Chem.*, 2002, **41**, 4630.

- H. Huppertz and W. Schnick, *Chem. Eur. J.*, 1997, **3**, 249; W. Schnick, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 806; M. Ludwig, J. Jaeger, R. Niewa and R. Kniep, *Inorg. Chem.*, 2000, **39**, 5909.
- 3 S. J. Clarke and F. J. DiSalvo, Inorg. Chem., 2000, 39, 2631.
- 4 H. Yamane and F. J. DiSalvo, J. Alloys Compd., 1996, 241, 69.
- 5 S. J. Clarke, G. R. Kowach and F. J. DiSalvo, *Inorg. Chem.*, 1996, 35, 7009; S. J. Clarke and F. J. DiSalvo, *Inorg. Chem.*, 2000, 39, 2631.
- 6 M. Maunaye, J. Guyader, Y. Laurent and J. Lang, Bull. Soc. Fr. Mineral. Cristallogr., 1971, 94, 347.
- 7 M. Y. Chern, D. A. Vennos and F. J. DiSalvo, J. Solid State Chem., 1992, 96, 415.

- 8 R. Nesper and F. Zuercher, Z. Kristallogr. New Cryst. Struct., 1999, 214, 21.
- 9 K. S. Aleksandrov and J. Bartolomé, J. Phys.: Condens. Matter, 1994, 6, 8219.
- 10 R. W. Chorley, P. B. Hitchcock, M. F. Lappert, W. Leung, P. P. Power and M. M. Olmstead, *Inorg. Chim. Acta*, 1992, **198–200**, 203.
- 11 G. Landrum, Yet Another Extended Hückel Molecular Orbital Package (YAeHMOP), Cornell University, 1997, http://yaehmop.sourceforge.net/.
- 12 G. M. Sheldrick, SHELX97: Programs for Crystal Structure Analysis (Release 97-2), University of Göttingen, Germany, 1997, http:// shelx.uni-ac.gwdg.de/SHELX/.
- 13 N. W. Alcock, Crystallogr. Comput., 1970, 271.